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Abstract 20 

Metabolic reaction rates (fluxes) play a crucial role in comprehending cellular 21 

phenotypes and are essential in areas such as metabolic engineering, biotechnology, 22 

and biomedical research. The state-of-the-art technique for estimating fluxes is 23 

metabolic flux analysis using isotopic labelling (13C-MFA), which uses a dataset-24 

model combination to determine the fluxes. Bayesian statistical methods are gaining 25 

popularity in the field of life sciences, but the use of 13C-MFA is still dominated by 26 

conventional best-fit approaches. The slow take-up of Bayesian approaches is, at 27 

least partly, due to the unfamiliarity of Bayesian methods to metabolic engineering 28 

researchers. To address this unfamiliarity, we here outline similarities and differences 29 

between the two approaches and highlight particular advantages of the Bayesian way 30 

of flux analysis. With a real-life example, re-analysing a moderately informative 31 

labelling dataset of E. coli, we identify situations in which Bayesian methods are 32 

advantageous and more informative, pointing to potential pitfalls of current 13C-MFA 33 

evaluation approaches. We propose the use of Bayesian model averaging (BMA) for 34 

flux inference as a means of overcoming the problem of model uncertainty through its 35 

tendency to assign low probabilities to both, models that are unsupported by data, 36 

and models that are overly complex. In this capacity, BMA resembles a tempered 37 

Ockham’s razor. With the tempered razor as a guide, BMA-based 13C-MFA alleviates 38 

the problem of model selection uncertainty and is thereby capable of becoming a 39 

game changer for metabolic engineering by uncovering new insights and inspiring 40 

novel approaches.  41 
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1. Introduction 42 

Intracellular metabolic reaction rates (fluxes) provide a quantitative and 43 

experimentally-anchored account of the cellular physiology that underpins 44 

phenotypes (Nielsen, 2003; Sauer, 2006). Once captured, intracellular fluxes are 45 

readily interpretable as flux maps (analogues of traffic congestion maps) that highlight 46 

metabolic bottlenecks (Stephanopoulos G. et al., 1998), pinpoint the effectiveness of 47 

genetic or bioprocess optimization efforts (Becker et al., 2011; Das et al., 2020), 48 

inform how cells regulate their metabolism (Kochanowski et al., 2021), reveal energy 49 

leaks (Zhao et al., 2012), and allow deriving otherwise indeterminable cellular 50 

parameters (Zelle et al., 2021). Metabolic fluxes also play an important role in the 51 

biomedical sector, e.g. to detect metabolic “reprogramming” induced by disorders, 52 

viruses, pathogens or other diseases as well as to study the mode of action of drugs 53 

(Borah et al., 2019; Lagziel et al., 2019; Munger et al., 2008; Murphy et al., 2013). 54 

Knowledge of metabolic fluxes has also far-reaching implications beyond flux maps 55 

as they narrow plausible intracellular metabolite concentration ranges (Beard et al., 56 

2002; Wiechert, 2007; Xu et al., 2020), calibrate kinetic metabolic models (Foster et 57 

al., 2019), are essential for reconciling enzyme kinetic parameters from databases 58 

(Liebermeister and Noor, 2021), and provide a solid basis for machine learning 59 

approaches to study metabolism (Wu et al., 2016). Fluxes also provide the principal 60 

means by which the results of metabolic engineering can be assessed. Consequently, 61 

the accurate system-wide estimation of metabolic fluxes, which includes the reliable 62 

quantification of their uncertainties, is a vitally important technique for all basic as well 63 

as applied biosciences, such as metabolic engineering. 64 

The state-of-the-art method for inferring metabolic fluxes is 13C metabolic flux 65 

analysis (MFA) (Wiechert, 2001). In 13C-MFA, data from labelling experiments 66 
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conducted under metabolic (quasi-)steady state conditions are analysed in the 67 

context of a biochemical reaction model to generate detailed metabolic flux maps 68 

(Long and Antoniewicz, 2019; Niedenführ et al., 2015). Two variants are distinguished 69 

based on whether the labelling information consists of labelling time-courses 70 

(isotopically nonstationary, short INST, 13C-MFA) or is acquired after reaching an 71 

isotopic steady-state in the target intermediates (steady-state 13C-MFA) (Wiechert 72 

and Nöh, 2021). Regardless of which variant is used, the key feature of 13C-MFA is 73 

that it not only provides an estimate of intracellular fluxes, but it also equips each flux 74 

value (and pool size in case of INST) with an uncertainty measure, either in terms of 75 

confidence or credible intervals (Theorell et al., 2017). Essentially, these intervals 76 

articulate how the inevitable experimental noise in the data propagates through the 77 

biochemical network, thereby indicating the degree of caution that is required in 78 

interpreting the flux estimates. The confidence limits of the inferred fluxes can be 79 

narrowed by increasing the quantity and/or quality of the data, e.g., by conducting 80 

extensive experimental campaigns (Leighty and Antoniewicz, 2013), or targeted 81 

selection of a (co-)tracer mixture and measurement technology (Borah Slater et al., 82 

2023; Nöh et al., 2018). However, theoretical investigations (Kappelmann et al., 2016) 83 

as well as extensive experimental exercises (Crown et al., 2015) have demonstrated 84 

that, in any realistic study, several central metabolic fluxes will remain unresolved. 85 

13C-MFA models are built with knowledge of mass balances, formulated upon 86 

genetic and biomolecular knowledge that formalizes the incorporation of isotopically 87 

labelled substrates into the metabolic pathways of the target organism. The scope of 88 

the models – the extent of the metabolic reaction set that is to be modelled – is 89 

roughly shaped by the observed metabolites and their ability to provide information on 90 

the pathways of primary interest. Typical 13C-MFA models inform on central carbon 91 



5 

metabolism and amino acid biosynthesis, with a recent trend to increasing the model 92 

scope (McCloskey et al., 2016a), as reviewed in (Hendry et al., 2020), by more 93 

application of more advanced analytical techniques (Kappelmann et al., 2019; 94 

McCloskey et al., 2016b; Zheng et al., 2024) and performant simulation tools (Quek et 95 

al., 2009; Rahim et al., 2022; Sokol et al., 2012; Weitzel et al., 2013; Wu et al., 2023; 96 

Young, 2014).  97 

Concerning uncertainty quantification for the metabolic fluxes, the 13C-MFA 98 

field has been shaped by the statistical “frequentist” viewpoint (Antoniewicz et al., 99 

2006; Wiechert et al., 1999). Bayesian methods were first mentioned only in 2006 100 

(Kadirkamanathan et al., 2006), and are only rarely used in practice, even though 101 

Bayesian inference provides a consistent framework for updating prior knowledge 102 

about fluxes with new evidence, a situation that is frequently encountered in 103 

metabolic engineering. One key difference between the Bayesian and frequentist 104 

approaches is that the latter’s maximum likelihood estimator gives the best fit, a so-105 

called point estimate, for the true, but unknown flux vector (the common term “flux 106 

distribution” is ambivalent, so we here use the term “flux vector” to indicate that the 107 

outcome is a concrete flux map). In the Bayesian paradigm, in contrast, a flux vector 108 

is considered a multivariate random variable which is assigned a probability density. 109 

Thus, the unknown fluxes are interpreted as inherently uncertain quantities. The final 110 

outcome of a Bayesian 13C-MFA is then represented by the so-called joint flux 111 

posterior probability distribution, which, once determined, unlocks insights into flux 112 

probabilities and correlations that go beyond the single point estimate derived using 113 

flux fitting with subsequent statistical analysis. The flux uncertainty obtained from flux 114 

posterior-based credible intervals by marginalization (integration) of the joint posterior 115 

probability distribution is straightforward to interpret, i.e., the true flux value is with, 116 
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say, 95% probability contained in the interval, an interpretation that is often wrongly 117 

attributed to frequentist confidence intervals (Ellison, 2004; Morey et al., 2016). 118 

Moreover, the derivation of confidence intervals is brittle in the sense of credibility of 119 

the confidence limits. This is because the confidence intervals are sensitive to the 120 

algorithm with which they are determined (Theorell et al., 2017). For introductory texts 121 

on Bayesian concepts, we refer to the excellent textbook by Gelman et al., (2013). 122 

We here demonstrate that the statistical rigour of the Bayesian machinery is 123 

superior to frequentist methods of 13C-MFA in its ability to map data uncertainty into 124 

flux uncertainty. This is because the Bayesian framework empowers us to, besides 125 

data noise, also take the uncertainty in the model used for flux inference into account. 126 

However, the Bayesian nomenclature can quickly become overwhelming for non-127 

statisticians. To explain the advantages of the Bayesian way of flux analyses to the 128 

metabolic engineer who has grown up in the frequentist world, we give the core 129 

principles without statistical overload. We showcase the Bayesian machinery in 130 

action, with a worked example to highlight the “Why”, “When”, and “How” of this 131 

modern approach to metabolic flux inference, by deriving a novel solution to a long-132 

standing 13C-MFA problem. 133 

 134 

2. Theory/calculation 135 

2.1. Bayesian 13C-MFA using single models 136 

Phrased in the language of Bayesian statistics, the goal of metabolic flux analysis is 137 

to determine the posterior probability distribution of net and exchange fluxes 𝜃 from a 138 

labelling data set 𝐷 by means of an atom transition model ℳ* (Wiechert and de 139 

                                                            
* With the term model we mean a system of mathematical equations, defined over a parameter space 
and with an image in the observation space. 
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Graaf, 1997)). Here we denote the flux vector 𝜃ℳ ൌ ൫𝜃ℳ
௡௘௧, 𝜃ℳ

௫௖௛൯, where the subscript 140 

indicates the parameters’ model affinity. Throughout this section we consider the 141 

model structure fixed, as this is standard in 13C-MFA. In the Bayesian world, any flux 142 

is considered a random variable equipped with a credibility represented by a 143 

probability. Considering all possible flux values gives a probability distribution. The 144 

central desired quantity of 13C-MFA is, thus, the joint flux posterior probability 145 

distribution, denoted 𝑝ሺ𝜃ℳ|ℳ, 𝐷ሻ (“the probability of the flux vector 𝑣ℳ given model 146 

ℳ and data 𝐷”, short posterior), which assigns a probability to each flux constellation 147 

taking into account the data. If that posterior probability distribution is narrow, there 148 

are only few flux vectors considered credible and there is low uncertainty about their 149 

values. On the contrary, if the posterior distribution is wide, there are many flux values 150 

with a weak credibility, thereby representing high uncertainty. To derive the posterior, 151 

Bayes theorem is employed (Bayes and R, 1763):  152 

 
𝑝ሺ𝜃ℳ|ℳ, 𝐷ሻ ൌ

𝑝ሺ𝐷|𝜃ℳ, 𝑀ሻ ∙ 𝑝ሺ𝜃ℳ|ℳሻ
𝑝ሺℳ, 𝐷ሻ

 
( 1 ) 

which expands 𝑝ሺ𝜃ℳ|ℳ, 𝐷ሻ into three ingredients: the prior probability distribution 153 

𝑝ሺ𝜃ℳ|ℳሻ, (short, the prior), the likelihood 𝑝ሺ𝐷|ℳ, 𝜃ℳሻ, and the normalization 154 

constant 𝑝ሺℳ, 𝐷ሻ, that transforms the (relative) flux posterior probability distribution 155 

(enumerator in Eq. (1)) into a probability density with total probability of one.  156 

The normalizing constant is called evidence that expresses the probability of 157 

the model-data combination, which is calculated by integrating over the feasible flux 158 

values 159 

 𝑝ሺℳ, 𝐷ሻ ൌ න 𝑝ሺ𝐷|𝜃ℳ, ℳሻ ∙ 𝑝ሺ𝜃ℳ|ℳሻ 𝑑𝜃ℳ ( 2 ) 

The likelihood, 𝑝ሺ𝐷|𝜃ℳ, 𝑀ሻ, is the probability that we observe the data 𝐷 given model 160 

ℳ with flux vector 𝜃ℳ. The likelihood is closely related to the frequentist world, where 161 
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it reflects the maximum likelihood estimation (or optimization) landscape, from which 162 

the best fit (maximum agreement between measured and model-predicted data) is 163 

derived. From the mode of the posterior 𝑝ሺ𝜃ℳ|ℳ, 𝐷ሻ the particular flux vector that 164 

best explains the observed data set is the so-called maximum a posteriori (MAP) 165 

point estimate. In particular, the MAP coincides with the best maximum likelihood fit, 166 

in case of uninformative priors (Theorell et al., 2017). 167 

The prior, 𝑝ሺ𝜃ℳ|ℳሻ, expresses the knowledge about the model-specific fluxes 168 

𝜃ℳ that is available before the labelling experiment is made. The more knowledge is 169 

encoded in the prior, the larger is its influence on the result. Since priors are formally 170 

unknown to frequentists, their formulation often gives rise to confusion. So how do we 171 

specify flux priors for a 13C-MFA? In the common scenario that we study an organism 172 

under conditions that have already been studied, some knowledge about flux value 173 

ranges and a notion about their (un)certainty exists. This knowledge, formalized as an 174 

informed prior probability distribution, enters Eq. (1). Actually the same happens in 175 

traditional 13C-MFA: the modeller specifies available knowledge by adding 176 

constraints, e.g., assumptions on reaction reversibility or the range of possible flux 177 

values. In a scenario, where less knowledge on the fluxes is available or should be 178 

used, any theoretically possible flux constellation is considered equally likely. In any 179 

way, subtly, the reaction stoichiometry imposes non-trivial flux boundaries that, 180 

together with upper and lower flux limits, renders the flux prior a density and makes 181 

even an uniform flux prior informative (Jadebeck et al., 2021; Theorell et al., 2022). 182 

To exemplify Bayesian 13C-MFA, we revisit a published study that features 183 

E. coli (Zamboni et al., 2009). In the study, a labelling experiment with a tracer 184 

mixture of 20% [U-13C]-glucose and 80% naturally labelled glucose was conducted in 185 

a continuous cultivation with the MG1655 wild type at a growth rate of 0.12 h-1.In total 186 
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192 independent labelling measurements were generated by mass spectrometry of 187 

11 amino acids, as well as growth rate and glucose uptake rate measurements 188 

(Supplementary Table S1, the glucose tracer mixture was fixed). The original network 189 

model, hitherto termed ℳ଴, used for data analysis covers central carbon metabolism 190 

and biosynthesis routes (Figure 1), therewith representing a typical 13C-MFA 191 

example. The model comprises 66 reactions connecting 37 metabolites. Of the 66 192 

reactions, 49 were considered uni-directional and 17 bidirectional, as a consequence 193 

of assumptions imposed by thermodynamic properties. Further expert knowledge was 194 

implemented, such as the activity of malic enzyme (ana3) in gluconeogenetic 195 

direction or the exclusion of the Entner-Doudoroff pathway, known to be inactive 196 

under the studied conditions. Therewith, reaction stoichiometry leaves 10 adjustable 197 

net fluxes and 17 adjustable exchange fluxes. Sampling the flux solution space 198 

uniformly then reveals the flux prior introduced by the model formulation ℳ଴: while 199 

the marginal net flux priors exhibit informative shapes (Supplementary Fig. S5), 200 

exchange flux priors obviously remain diffuse within their boundaries. The task of 201 

single-model 13C-MFA is to infer all 27 free flux parameters from the 193 independent 202 

measurements. 203 
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 204 

Figure 1: Metabolic network of the central carbon metabolism of E. coli representing 205 

the 𝓜𝟎 model taken from Zamboni et al., (2009). Double headed arrows indicate 206 

bidirectional reactions (diamonds), unidirectional reactions are shown single headed. 207 

Metabolic pathways are color-coded with the 11 measured amino acids (rounded rectangles) 208 

indicated in orange. The model ℳ଴ was formulated with the model editor Omix (v1.9.34) 209 

(Droste et al., 2013) and exported to FluxML format (v1.3), an universal language for 210 
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specification of 13C-MFA models (Beyß et al., 2019). The full FluxML model specification, 211 

including atom mapping and measurements, is given in the Supplementary Data. 212 

 213 

 214 

Bayesian flux estimation with the ℳ଴ model was carried out as described 215 

previously (Theorell et al., 2017). In short, the high-performance simulator 216 

13CFLUX2 (v2.0) (Weitzel et al., 2013) was used for likelihood calculation. Flux prior 217 

and posterior probability distributions given by Eq. (1) were calculated using Markov 218 

chain Monte Carlo (MCMC) sampling , using the highly optimized polytope sampling 219 

library HOPS (Jadebeck et al., 2021), after rounding (Theorell et al., 2022) and 220 

thinning (Jadebeck et al., 2023). The posterior distributions were checked for 221 

convergence (flux-wise potential scale reduction factor < 1.01 and effective sample 222 

sizes (ESS) >> 1,000, see Supplementary Table S.2 and Supplementary Methods for 223 

more details). Figure 2 shows the inference results for 9 out of the 10 free net fluxes 224 

selected from different metabolic pathways of E. coli, along with their marginal 95% 225 

credibility intervals. For reference, the values reported in the original study (Zamboni 226 

et al., 2009), using nonlinear flux fitting in combination with linearized error 227 

propagation (Wiechert et al., 1997), using 13CFLUX (Wiechert et al., 2001), are also 228 

shown.  229 

 230 
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 231 

Figure 2: Single-model flux inferences using 𝓜𝟎. Marginal posterior probability 232 

distributions for net fluxes of reactions located in different metabolic pathways are shown: 233 

emp1.n, emp3.n, emp6.n (glycolysis), ppp1.n (pentose phosphate pathway), tca3.n, tca5a.n 234 

(tricarboxylic acid cycle), ana1.n, ana3.n (anaplerosis), and gs1.n (glyoxylate shunt). Marginal 235 

flux posterior probability distributions derived from Eq. (1) with the MAP and 95% credibility 236 

intervals are shown in blue, best fit values and 95% confidence intervals reported by Zamboni 237 

et al., (2009) in red. In the original study 21 of the 27 free fluxes were set constant after fitting 238 

before performing the statistical analysis, whereas the Bayesian analysis was carried out 239 

using model ℳ଴ with 27 free fluxes. Therefore, emp6.n (pyruvate kinase) lacks a confidence 240 

interval, as the flux was fixed to a value of 5.22 mmol/(gCDW h). Credibility intervals are 241 

bounded by definition to not include values beyond the feasible flux range, unlike confidence 242 

intervals produced by linearized statistics (cf. tca3.n, ana3.n). Marginal distributions for the 243 

remaining net fluxes and their 95% credibility intervals are given in Supplementary Fig. S6. 244 

 245 

 246 

3. Results and discussion 247 

3.1. Bidirectional reaction steps give rise to model selection uncertainty 248 

Models are never perfect, but always approximate specific aspects of the system 249 

under study. For a model to be useful when operated within a particular scientific 250 
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context such as flux estimation, two criteria have to be fulfilled: the model scope has 251 

to be general enough to address the questions of interest, and yet it must be 252 

verifiable experimentally. In biochemical network modelling, these two criteria are not 253 

sufficient to determine a unique model formulation (Hangos et al., 2014; Haunschild 254 

et al., 2005). In this situation, the choice of the particular model to be used can 255 

profoundly influence the conclusions drawn from the analysis of the particular dataset. 256 

13C-MFA is no exception, despite its well-defined biochemical groundings and best-257 

practice to collect experimental evidence for major influencing factors (Zamboni et al., 258 

2009). Modern high-throughput technologies (Heux et al., 2017) open the door to 259 

retain a subset of the data for validation purposes and model checking (Gelman et al., 260 

2020), therewith offering rigorous tools to (in)validate candidate models, thereby 261 

curbing against model misspecification, as exemplified by Sundqvist et al (2022). 262 

Nonetheless, even with all these safeguards in place and within an agreed and 263 

validated model scope, there are, as in any modelling effort, specific design decisions 264 

involved, each of which has potential consequences on flux estimates.  265 

An ever-present question in 13C-MFA is whether reversible reactions† operate 266 

uni- or bidirectionally under in vivo conditions. The answer to this question determines 267 

much of the mathematical structure of the labelling systems (Wiechert and de Graaf, 268 

1997); but, in contrast to pathway enrichment or enzyme activity testing, in vivo 269 

reaction bidirectionality is experimentally hardly accessible. The second law of 270 

thermodynamics provides pointers that may identify a reaction as likely to be 271 

unidirectional (Wiechert, 2007); but the vast majority of enzymatic reactions operates 272 

near thermodynamic equilibrium such that bidirectional labelling exchange can 273 

                                                            
† Essentially all biochemical reactions are reversible but when a strong thermodynamic driving force 
drives a reaction in a single reaction direction then it is said unidirectional, otherwise bidirectional.  
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happen even if the net flux is small. For example, even in the glycolytic pathway of 274 

extremely well-studied organisms such as E. coli such “surprises” can happen (Long 275 

et al., 2017), proving previous model specifications wrong. Isotope labelling data can 276 

be informative about reaction bidirectionality, as was demonstrated in the early days 277 

of 13C-MFA (Wiechert and de Graaf, 1997), both in silico (Follstad and 278 

Stephanopoulos, 1998), and in vivo (Marx et al., 1996). Since the reaction 279 

bidirectionality setting is a crucial ingredient for constructing the model that is used to 280 

analyse the labelling data, the modeller here has to decide on a model formulation 281 

before evaluating the data set at hand despite epistemic uncertainty.  282 

While for describing the labelling flow through a unidirectional reaction one flux 283 

parameter is sufficient, in case of a bidirectional reaction two parameters are 284 

required. Commonly net and exchange fluxes are used to describe the fluxes of a 285 

reversible reaction step (Wiechert and de Graaf, 1997), where a net flux quantifies the 286 

net transport of label between substrates and products of a reaction, while the 287 

exchange flux is the quantity of the labelling flow that goes in both, forward and 288 

backward direction. It has been argued that in the case of a reaction could be 289 

bidirectional, it is safest to allow the data to provide evidence of whether it actually is 290 

uni- or bidirectional under the tested conditions. Exchange fluxes, however, are 291 

deemed to be not well-identifiable (Wiechert and Nöh, 2021), making it desirable to 292 

reduce their number to reduce the risk of describing the noise in the data.  293 

 294 

3.2. Single bidirectionality settings ignore model uncertainty in 13C-MFA 295 

Figure 3 visualises the bidirectionality settings of the original model ℳ଴ and two 296 

alternative models,  ℳଵ and ℳଶ, derived by setting some of the bidirectional reactions 297 

unidirectional. The two models ℳଵ and ℳଶ are simpler in that they have only 3 298 
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exchange fluxes each (ℳ଴ has 17 exchange parameters), whereas all models share 299 

the same set of net fluxes (10). The two models ℳଵ and ℳଶ were selected 300 

heuristically by inspecting flux sensitivities and correlations and ensuring that no flux 301 

or flux combination essential to achieve a good fit to the data were eliminated. All 302 

models were given the same flux bounds as ℳ଴, except for their bidirectionalities 303 

(Supplementary Table S1). The weighted sum of squared residuals (WSSR) obtained 304 

by maximum likelihood estimation are 137.8 and 137.9 for ℳଵ and ℳଶ, respectively; 305 

values that are very similar to the value of the original model ℳ଴ (132.0). 306 

 307 
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 308 

Figure 3: Alternate bidirectional reaction settings of the original model 𝓜𝟎. 309 

Bidirectional reactions are highlighted with black double headed arrows. All models share the 310 

same 10 net fluxes, while the exchange fluxes are specific to the models: 17 for ℳ଴ 311 

(WSSR=132.0), 3 for ℳଵ (WSSR 137.8) and ℳଶ (WSSR 137.9), as well as 24 for ℳିଵ 312 

(WSSR 131.3). Specifications of the models are available in the Supplementary Data. 313 

 314 

 315 
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That the bidirectionality setting indeed has dramatic consequences on practical 316 

net flux inference becomes evident in Figure 4, where the net flux posterior probability 317 

densities for the 9 selected net fluxes E. coli (remaining net flux distributions are 318 

provided in Supplementary Fig. S7), derived by Eq. (1), are shown for the three 319 

different models. The flux posterior for each of the models differs strongly in several 320 

net fluxes, in particular for the simple models ℳଵ and ℳଶ. The comparison shows that 321 

there is also little consensus amongst the minimal models and ℳ଴ in the upper 322 

glycolysis (emp1.n) and the pentose phosphate pathway (ppp1.n – ppp6.n). The 323 

results suggest that the minimal models yield inferences with smaller variances 324 

compared to the original model, as expected, but also suffer from higher biases ( 325 

emp1.n, ppp1.n – ppp6.n), induced by setting too many reactions unidirectional.  326 

  327 
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 328 

 329 

Figure 4: Flux posterior probability distributions derived from single-model inference. 330 

Net fluxes of reactions located in different metabolic pathways are selected: emp1.n, emp3.n, 331 

emp6.n (glycolysis), ppp1.n (pentose phosphate pathway), tca3.n, tca5a.n (tricarboxylic acid 332 

cycle), ana1.n, ana3.n (anaplerosis), and gs1.n (glyoxylate shunt), derived with the original 333 

model ℳ଴ (blue), the simple models ℳଵ, ℳଶ (rose, yellow), and ℳିଵ (plum) a super-model 334 

of ℳ଴.The parsimonious models ℳଵ and ℳଶ yield contradictory inferences and, 335 

unsurprisingly, grossly underestimate flux uncertainty, whereas the models ℳ଴ and ℳିଵ 336 

show higher similarity for most, but not all net fluxes. Marginal distributions for the remaining 337 

net fluxes and their 99% credible intervals are given in Supplementary Figs. S7 and S12. 338 

Numbers give the 1-Wasserstein distance (in mmol/gCDW/h), a metric that quantifies the 339 

discrepancy between the posterior distributions related to ℳ଴. Values close to 0 indicate 340 

good agreement. Wasserstein distances were calculated using SciPy (1.5.4). A pairwise 341 

model comparison across all net fluxes revealing most dissimilar net flux inferences is given 342 

in Supplementary Figs. S11. 343 

 344 

 345 

That only 17 fluxes are considered bidirectional in the original model is the 346 

consequence of bidirectionality assumptions supported by expert knowledge. To test 347 
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a model variant that has more bidirectional reactions than the original model, we 348 

relaxed some of these assumptions and considered 24 reactions to be potentially 349 

bidirectional (the relaxed reactions are indicated in Figure 6 in red). The relaxed 350 

model is hitherto denoted ℳିଵ (Figure 3). Flux posterior distributions derived with 351 

ℳିଵ (Figure 4 in plum) are comparable with those of model ℳ଴ in many, but not all 352 

net fluxes. Most prominent discrepancies occur in the anaplerotic section (ana1.n), 353 

where the credibility intervals produced with the complex model ℳିଵ are smaller than 354 

those produced by the much more constrained original model ℳ଴, despite using the 355 

same data (Supplementary Fig. S12). An explanation for this phenomenon is that the 356 

complex model ℳିଵ starts to fit the noise in the data, which renders the credibility 357 

limits less reliable. This shows that using an “all-inclusive super” model (a model with 358 

all potentially reversible reactions set bidirectional) does not secure reliable flux 359 

inference. 360 

Summarizing, in 13C-MFA a multitude of equally well-performing model 361 

candidates exists for all real-world problems. The choice of whether to set reactions 362 

as either uni- or bidirectional is crucial to the flux solution. The frequently used 363 

strategy of setting the reactions with uncertain bidirectionality as bidirectional is not a 364 

safe bet in terms of inferential reliability, because it can produce different MAPs and 365 

cause unpredictability in over- or under-estimation of credibility intervals. The 366 

question is how to determine a useful model from the set of possible models that 367 

gives reliable flux estimates and confidence limits? 368 

 369 

3.3. Bayesian model selection 370 

To identify the “best” model among many candidates, a variety of information-371 

theoretical model selection criteria has been formalized that trade-off fit quality (how 372 
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well the model explains the data) and model simplicity (often related to the number of 373 

independent model parameters) (Burnham and Anderson, 2002). A review of these 374 

selection criteria and their application in systems biology is provided by Kirk et al. 375 

(2013). The justification that among all model candidates with the same fit quality, the 376 

simplest one is favoured (Ockham’s Razor) rests on probabilistic grounds: Simple 377 

models, with few adjustable parameters, are able to adjust to fit only a narrow range 378 

of experimental outcomes, compared to complex models with many adjustable 379 

parameters (MacKay, 2003). Therefore, in the common scenario where both a simple 380 

and a complex model can fit the data equally well, the simple model is suggested to 381 

be more credible, since it is less likely to fit the data by chance (Jefferys and Berger, 382 

1992; McFadden, 2023). 383 

 384 

3.3.1. Comparing 13C-MFA models using likelihood ratios 385 

The guiding principle of simplicity (or parsimony) is embodied in Bayesian model 386 

selection (MacKay, 2003); see Supplementary Methods for an educational example. 387 

In the context of potentially bidirectional reaction steps, simplicity is linked to the 388 

number of parameters in 13C-MFA models. So, what is the outcome of Bayesian 389 

model selection when we compare our (complex) reference model ℳ଴ (27 free flux 390 

parameters) with the simpler models ℳଵ or ℳଶ (13 free flux parameters)? For this, we 391 

need to determine the posterior probability of the models ℳ௜ in view of the data 𝐷, in 392 

short the model posterior 𝑝ሺℳ௜|𝐷ሻ. To derive these quantities, we first expand 393 

𝑝ሺℳ௜|𝐷ሻ using Bayes theorem:  394 

 
𝑝ሺℳ௜|𝐷ሻ ൌ

𝑝ሺ𝐷|ℳ௜ሻ ∙ 𝑝ሺℳ௜ሻ
𝑝ሺ𝐷ሻ

( 3 ) 
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To assess, which particular model formulation from a set of two 13C-MFA model 395 

candidates, say ℳ଴ and ℳଵ, is more likely, using Eq. (3), we then compute the ratio 396 

of model posteriors: 397 

 𝑝ሺℳଵ|𝐷ሻ

𝑝ሺℳ଴|𝐷ሻ
ൌ

𝑝ሺ𝐷|ℳଵሻ ∙ 𝑝ሺℳଵሻ

𝑝ሺ𝐷|ℳ଴ሻ ∙ 𝑝ሺℳ଴ሻ
 

( 4 ) 

where 𝑝ሺ𝐷ሻ cancels out. The likelihood of a model ℳ௜, 𝑝ሺ𝐷|ℳ௜ሻ, is derived by 398 

averaging out (marginalizing) the influence of its flux parameters, 𝜃ℳ௜, specific to ℳ௜: 399 

  𝑝ሺ𝐷|ℳ௜ሻ ൌ න 𝑝൫𝐷ห𝜃ℳ೔
, ℳ௜൯ ∙ 𝑝൫𝜃ℳ೔

หℳ௜൯ 𝑑𝜃ℳ೔
 

( 5 ) 

Inserting Eq. (5) into Eq. (4) gives the marginal probability likelihood ratio for the 400 

comparison of two models ℳ଴ and ℳଵ: 401 

  𝑝ሺℳଵ|𝐷ሻ
𝑝ሺℳ଴|𝐷ሻ

ൌ  
׬ 𝑝൫𝐷ห𝜃ℳభ

, ℳଵ൯ ∙ 𝑝൫𝜃ℳభ
หℳଵ൯ 𝑑𝜃ℳభ

׬ 𝑝൫𝐷ห𝜃ℳబ
, ℳ଴൯ ∙ 𝑝൫𝜃ℳబ

หℳ଴൯ 𝑑𝜃ℳబ

∙  
𝑝ሺℳଵሻ
𝑝ሺ𝑀଴ሻ

 
( 6 ) 

When, in the absence of a preference, as equal prior probability is assigned to each 402 

of the two models, i.e. 𝑝ሺℳ଴ሻ ൌ  𝑝ሺℳଵሻ, the posterior odds in Eq. (6) reduces to the 403 

so-called Bayes factor (Kass and Raftery, 1995; Wasserman, 2000), the ratio of the 404 

marginal likelihoods (or evidences) of the two model hypotheses. A Bayes factor of 405 

10, for instance, states that the data 𝐷 are considered 10 times more likely to be 406 

produced from model ℳ଴ rather than from model ℳଵ. Hence, Eq. (6) is a rigorous 407 

means for model comparison, providing a measure for the evidence, where the model 408 

with the higher probability is preferred (MacKay, 2003; Pullen and Morris, 2014). 409 

To answer our question, which of the three models is supported by the data 410 

most, we calculated the posterior probabilities of the models ℳଵ and ℳଶ relative to 411 

the original model ℳ଴ without preference to any of the three models (i.e., the prior 412 

odds ratios are 1.0 in Eq. (6)). Practically, Bayesian evidence approximation is 413 
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performed using nested sampling (Skilling, 2006), precisely through Diffusive Nested 414 

Sampling (Brewer et al., 2011), a performant MCMC technique implemented in the 415 

software DNest4 (v4) (Brewer and Foreman-Mackey, 2018). The calculations yields: 416 

 
𝑝ሺℳଵ|𝐷ሻ

𝑝ሺℳ଴|𝐷ሻ
ൌ

𝑝ሺ𝐷|ℳଵሻ

𝑝ሺ𝐷|ℳ଴ሻ
ൎ 4.8 ⋅ 10ଶ 

( 7 ) 

 
𝑝ሺℳଶ|𝐷ሻ

𝑝ሺℳ଴|𝐷ሻ
ൌ

𝑝ሺ𝐷|ℳଶሻ

𝑝ሺ𝐷|ℳ଴ሻ
ൎ 5.1 ⋅ 10ଷ 

meaning that both minimal models, ℳଵ and ℳଶ, are at least two orders of magnitude 417 

more probable than the published model ℳ଴. This is a consequence of the action of 418 

Ockham’s razor that is embodied in Bayesian statistics: the original model ℳ଴ 419 

accommodates a larger range of data with its 14 additional parameters than the 420 

simpler models; but because the simpler models explain the data almost as well as 421 

the original model, they are considered to be more likely. 422 

 423 

3.3.2. Model probability 424 

In the E. coli example, it is important to recognize that, although the ℳଶ model is 425 

more likely than ℳ଴ and ℳଵ,we have derived our conclusion by comparing the 426 

posterior probabilities of only three models rather than accounting for all possible 427 

models. In particular, even though ℳଶ is ten times more likely than ℳଵ, its absolute 428 

probability, may nevertheless be very small, taking all of the un-investigated model 429 

candidates into account. Indeed, recalling the difference of 14 bidirectionalities 430 

between the simple and the original model, it is very likely that there exists a large 431 

number of models that are simpler than the original model, and have a similar 432 

likelihood, but different flux posterior distributions (Figure 4). In that situation, 433 

selecting any single model with a high likelihood, can nevertheless seriously 434 

underestimate the flux uncertainty.  435 
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To see this, we now formulate the probability of a single model, as in Eq. (3), 436 

by relating its probability to the probability of the totality of all possible models 437 

(henceforth, absolute model probability). This requires us to assess the probability of 438 

the data under any possible bidirectionality hypothesis, as represented by the 439 

normalizing constant, the model evidence 𝑝ሺ𝐷ሻ in Eq. (3). Knowing that the sum of 440 

the probabilities of all, say 𝑁, possible models has to equal one, we can rewrite 441 

Eq. (3) to give the absolute probability density of a model ℳ௜ from a set of alternative 442 

models: 443 

 
𝑝ሺℳ௜|𝐷ሻ ൌ

𝑝ሺ𝐷|ℳ௜ሻ ∙ 𝑝ሺℳ௜ሻ

𝑝ሺ𝐷ሻ
ൌ

𝑝ሺ𝐷|ℳ௜ሻ ∙ 𝑝ሺℳ௜ሻ

∑ 𝑝൫𝐷หℳ௝൯ ∙ 𝑝൫ℳ௝൯ே
௝ୀଵ

 
( 8 )

We here consider all alternate model formulations that lead to a combinatorial set of 444 

models, precisely 𝑁 ൌ 2௡್೔ possible model structures, where 𝑛௕௜ is the number of 445 

reactions with uncertain bidirectionality for modelling the reaction bidirectionality. 446 

Then, in view of Eq. (8), a high relative model prior probability 𝑝ሺℳ௜ሻ and data 447 

likelihood 𝑝ሺ𝐷|ℳ௜ሻ, such as for ℳଶ, do not necessarily lead to a high (close to one) 448 

absolute model probability 𝑝ሺℳ௜|𝐷ሻ of models, since 𝑝ሺℳ௜|𝐷ሻ has to be normalized 449 

against the totality of all other possible 2௡್೔ models. This speaks to common sense: If 450 

we have a great many equally good explanations, the probability of any one being the 451 

correct model is small. This apparent conclusion does, however, have far-reaching 452 

consequences for 13C-MFA in general. In particular, employing model comparison 453 

approaches, such as probability likelihood ratios, to test all model variants for finding 454 

a winning model makes little sense. This is because, for example, selecting a single 455 

bidirectionality setting neglects a substantial amount of uncertainty related to the 456 

model selection process, yet the flux inferences would be oblivious to this uncertainty. 457 

This insight thus reveals a fundamental Achilles heel of the current practice of 458 
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applying a single 13C-MFA model for flux inference: there are likely to be many 459 

equally good, but quite different, solutions based on slightly different model structures 460 

that are consistent with the data. 461 

 462 

3.4. Multi-model 13C-MFA using Bayesian Model Averaging 463 

A promising approach to avoiding the pitfalls of using a single model for flux inference 464 

when there is considerable epistemic model uncertainty, is to combine the inferences 465 

of all candidate models. Bayesian model averaging (BMA) adopts such an approach 466 

by including all potential models, but weighting each model according to its model 467 

posterior probability, the likelihood of the data, given the model (Hoeting et al., 1999). 468 

Despite being an established statistical tool in many fields (Fragoso et al., 2018), 469 

BMA is only rarely employed in biochemical network modelling (Borah Slater et al., 470 

2023; Mitosch et al., 2023; Oates et al., 2014; Theorell and Nöh, 2020). To consider 471 

model uncertainty for flux inference with BMA, we extend Eq. (1) by averaging over a 472 

model set: 473 

 
𝑝ሺ𝜃|𝐷ሻ ൌ ෍ 𝑝൫𝜃ℳ೔

หℳ௜, 𝐷൯ ⋅ 𝑝ሺℳ௜|𝐷ሻ
ே

௜ୀଵ

  ( 9 ) 

Herein, 𝑝ሺℳ௜|𝐷ሻ is the absolute posterior model probability of model ℳ௜ in view of the 474 

data 𝐷, as given in Eq. (8), which is weighted by 𝑝൫𝜃ℳ೔
หℳ௜, 𝐷൯, i.e., the model-specific 475 

flux posterior probability distribution of the (net) flux parameters, 𝜃, that are shared 476 

across the models contained in the model set. Loosely speaking, the calculation rule 477 

in Eq. (9) averages out the joint influences of the uncertain model structures.  478 

Application of BMA requires the computationally challenging task of computing 479 

the flux posteriors for a set of models, which relates to a two-layered averaging 480 

process: the first averaging over the (continuous) flux space of each model candidate, 481 
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and the second averaging over the (discrete) model space. Instead of calculating the 482 

posterior probabilities of all 𝑁 ൌ 2௡್೔ models and their flux probability distributions 483 

separately, inference is performed using Reversible Jump Markov Chain Monte Carlo 484 

(RJMCMC), a trans-dimensional sampling algorithm that samples (discrete) model 485 

structures and (continuous) parameter values simultaneously (Green and Hastie, 486 

2009), thereby side-stepping the explicit calculation of each model weight in Eq. (9). 487 

Specifically, the relative number of times a model was sampled by RJMCMC here 488 

approximates the model's relative probability. Technical details about the construction 489 

of the RJMCMC transition densities, specific to 13C-MFA, are described in the 490 

Supplementary Information (Supplementary Sec. Methods) and Theorell and Nöh 491 

(2020).  492 

In this context, an important, but subtle point of distinction between single- and 493 

multi-model 13C-MFA is that, from the perspective of probability theory, there is a 494 

fundamental difference between replacing a bidirectional reaction in a network by a 495 

unidirectional one (change in model structure), and the alternative of setting its 496 

exchange flux to zero (fixing a parameter value), despite the fact these alternative 497 

settings yield the same simulated labelling enrichment. This is because removing a 498 

bidirectionality (or exchange flux) from a model alters the models’ probability, as this 499 

is proportional to the likelihood of the data, averaged over all feasible flux values. 500 

Consequently, eliminating a bidirectionality from a model lowers the dimensionality of 501 

its flux solution space that is averaged over, and therefore affects the average 502 

likelihood. In contrast, setting an exchange flux to 0 has no influence on the fit 503 

averaged over all other fluxes, since the flux solution space in this case remains the 504 

same.  505 

 506 
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3.5. BMA-based 13C-MFA: More robustness with fewer assumptions 507 

Applying BMA to the E. coli study, we next consider the set of all (nested) candidate 508 

models derived from model ℳ଴, through setting some bidirectional reactions as 509 

unidirectional. We denote this set by  ሼℳ଴ሽ, and recall that the simpler models ℳଵ and 510 

ℳଶ are two of the total of 2ଵ଻ ൌ 131.072 models that constitute the set. All models in 511 

 ሼℳ଴ሽ share the same set of net fluxes, but differ in the composition of exchange 512 

fluxes, and therefore the number of free parameters, short degrees of freedom (DOF), 513 

i.e.,  𝜃 ൌ 𝜃௡௘௧ in Eq. (9). Furthermore, we consider all model candidates in the set 514 

 ሼℳ଴ሽ to be equally likely. If the labelling data is informative about the exchange 515 

fluxes, application of Bayes' theorem results in constriction of the model set, by 516 

excluding models that have both too few and too many bidirectional reactions. This 517 

automatism contrasts the sequential test-based model updating strategies that are 518 

currently in use (Hendry et al., 2020).  519 

BMA with the model set ሼℳ଴ሽ yields net flux credible intervals similar to those 520 

of the original model ℳ଴ using single-model inference, as seen for 9 net fluxes in 521 

Figure 5 (red and blue, respectively), and for the remaining fluxes in Supplementary 522 

Fig. S9. However, the shape of the posterior distributions exhibits marked differences. 523 

Most prominently, BMA locates more probability mass to low values of emp1.n and, 524 

consequently, much higher values of ppp1.n, than the conventional single-model 525 

inference with the original model. Because ℳ଴ is contained in the model set ሼℳ଴ሽ, the 526 

difference in shape between the single-model posterior distributions and the BMA-527 

derived distributions can be interpreted as inability of the ℳ଴ model to represent the 528 

overall uncertainty in the model structure. 529 
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 530 

Figure 5: Comparison of flux posterior distributions using single-model and multi-531 

model inference. Single-model inferences are derived with the published model  ℳ଴ (blue, 532 

see also Fig. 4), multi-model inferences with the model sets ሼℳ0ሽ and ሼℳെ1ሽ (light and dark 533 

orange), for net fluxes shown in Fig. 4. Multi-model inferences are strikingly consistent. 534 

Results for the remaining fluxes are given in Supplementary Figs. S8-S10, expected values 535 

and 99% credible intervals in Supplementary Fig. S12. Numbers give the 1-Wasserstein 536 

distance between the posterior distributions derived with ሼℳ0ሽ and ሼℳെ1ሽ (in mmol/gCDW/h), 537 

respectively. The pairwise model comparison of Wasserstein distances in Supplementary 538 

Figs. S11 shows that similarity across all net fluxes inferred using multi-model sets is 539 

substantially larger than inferences derived with any two single models. 540 

 541 

 542 

For single-model inference we found similar incoherent net flux inferences when 543 

comparing the original model ℳ଴ and the model ℳିଵ having 7 additional bidirectional 544 

reactions (Figure 5, Supplementary Fig. S7). To study whether net flux inferences (in 545 

terms of net flux estimates and credible intervals) derived with the BMA approach are 546 

sensitive with respect to a larger model set, we repeated our BMA analysis with the 547 

more complex model set ሼℳെ1ሽ. This set is a 128 times larger super-set of ሼℳ଴ሽ that 548 



28 

consists of 2ଶସ ൌ 16.777.216 model structures. In fact, we found a striking consistency 549 

for the multi-model inferences obtained for ሼℳ0ሽ and ሼℳെ1ሽ, i.e., all net flux posteriors 550 

were entirely reproduced as can be seen for the 9 selected net fluxes in Figure 5 and 551 

the remaining ones in Supplementary Fig. S8. In addition, Supplementary Fig. S11 552 

shows that the differences in posterior distributions between the two models sets are 553 

considerably smaller than the differences between single models, e.g. between ℳ଴ 554 

and ℳିଵ, as measured by 1-Wasserstein distances. Generalizing from flux inference 555 

using a single model and MCMC (Theorell et al., 2017), to flux inference using 556 

multiple models and RJMCMC did not increase the computational effort, a remarkable 557 

finding that also has previously been noted (Theorell and Nöh, 2020). 558 

 559 

3.6. Discovering new insights into bidirectional reaction steps 560 

In all our BMA-based inferences, the exchange fluxes are marginalized according to 561 

Eq. (9). However, from the results obtained by RJMCMC sampling, we are still able to 562 

approximate the marginal posterior probability of how likely it is that a particular 563 

reaction step is uni- or bidirectional in view of the given data. By definition, the 564 

marginal posterior probability equals the cumulative probability over all models in 565 

which the reaction is found to be uni- and bidirectional, respectively, by inspecting the 566 

fraction of samples in which the considered exchange flux is positive. We investigated 567 

again both model sets ሼℳ଴ሽ and ሼℳିଵሽ and the results are shown in Figure 6. Each 568 

potentially bidirectional reaction amongst the set members was classified to be either 569 

bidirectional (probability 𝑝 ~ 1.0, black), unidirectional (probability 𝑝 ~ 0.0, red), or 570 

inconclusive (blue). Similar to the net flux posterior distributions, the bidirectionality 571 

inferences were found to be strikingly consistent (cf. Supplementary Fig. S13). 572 
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We found strong evidence that four of the unidirectional reactions that were 573 

artificially set to be bidirectional in ℳିଵ are indeed unidirectional: tca1, tca3 and tca4 574 

(with 𝑝 ≪ 0.01) in the TCA cycle and ppp1 in the oxidative PPP (𝑝 ൎ 0.05ሻ. Note that 575 

all these reactions are associated with carboxylation/decarboxylation steps in which 576 

the data strongly supports the expected decarboxylation direction, as was reasoned 577 

in the reference study (Zamboni et al., 2009). On the other hand, BMA provided no 578 

evidence in favour of either uni- or bidirectionality in the further three reactions (tca2, 579 

gs1, gs2) that were set unidirectional in the reference study. Furthermore, one 580 

reaction, ppp4 in the non-oxidative part of the PPP that was set bidirectional in the 581 

original model, was found to be unidirectional in the majority (𝑝 ൎ 0.94ሻ of solutions. 582 

Decisive evidence in favour of the bidirectionality of emp5 (𝑝 ൎ 1.0) was also found, 583 

implying that all models in which the enzyme enolase was set to operate 584 

unidirectionally failed to fit the data. Also interesting is that pyruvate kinase, which 585 

converts phosphoenolpyruvate (PEP) to pyruvate (PYR), emp6, which was set as 586 

bidirectional in the original study, shows the second highest probability of being 587 

bidirectional (𝑝 ൎ 0.9). This result is in line with studies subsequent to the original 588 

paper, such as Long et al. (2017), which was based on an extensive series of more 589 

than a dozen labelling experiments, also supporting bidirectionality in this enzyme. 590 

The remaining reactions have neither very high, nor very low probability of being 591 

bidirectional, meaning that the dataset was uninformative with regard to uni- or 592 

bidirectionality of these reactions.  593 

 594 
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 595 

Figure 6: Structural inference of reaction bidirectionalities with model set ሼ𝓜െ𝟏ሽ. By 596 

definition, the marginal bidirectionality probability equals the summed probability of all 597 

sampled models for which a reversible reaction is assigned to be bidirectional (.x > 0), where 598 

the probability of a model is represented by the number of times it is sampled divided by the 599 

total number of samples in the sampled model ensemble. High probability values (reactions 600 

and bars printed in black) give strong evidence for bidirectionality, and low values (reactions 601 

and bars in red) give strong support for unidirectionality. Medium probabilities (blue) imply 602 

that the investigated dataset is uninformative to whether the reaction is bi- or unidirectional. 603 

The 7 reactions considered unidirectional in the reference study (Zamboni et al., 2009), are 604 

printed in bold and underlined. Values for posterior probabilities are listed in Supplementary 605 

Table S1. 606 

 607 

 608 
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3.7. BMA penalizes over-simplistic and over-complex model formulations 609 

The marginal posterior distributions derived from the model ensemble ሼℳିଵሽ for both, 610 

net fluxes and bidirectionalities, are nearly indistinguishable from those obtained with 611 

its subset ሼℳ଴ሽ, despite the fact that the number of considered model variants in 612 

ሼℳିଵሽ is two orders of magnitude higher. It is surprising that the inferences derived 613 

using BMA remain remarkably robust, despite the drastic increase of the model set. 614 

We hypothesise that this is because the models with high probability, and thus high 615 

influence on the inferences, are the same regardless of whether the ሼℳ଴ሽ or the 616 

ሼℳିଵሽ model set is used, regardless of their difference in the underlying 617 

bidirectionality assumption sets. Since our results are calculated with RJMCMC, 618 

sampling model variants according to their probability in view of the data, the most 619 

important models should be contained in the sampled model sets, hitherto denoted 620 

the effective model set. To test our hypothesis, we compared the models in the 621 

effective model sets ሼℳ0ሽୣ୤୤ and ሼℳെ1ሽୣ୤୤, taking the number of independent fluxes 622 

(DOFs) as a proxy for model complexity. 623 

In the Bayesian framework, the posterior DOF distribution of the effective 624 

model set is determined by the DOF distribution of the underlying “prior” (i.e. 625 

complete) model set and the data. Due to our premise that each model within the 626 

prior model set is equally conceivable, the prior DOF distribution is binomial, shifted 627 

by an offset of 10 (the number of independent net fluxes). The prior and posterior 628 

DOF distributions are shown in Figure 7. For the complex model set ሼℳିଵሽ, consisting 629 

of models with maximally 34 prior DOFs, the prior distribution is centred at 630 

22.00  3.32 DOF, whereas the posterior has a mean complexity of 631 

20.41  1.71 DOF. Thus, the data gives preference to simpler models with fewer 632 

bidirectionalities than the average model in ሼℳିଵሽ. For the set of models ሼℳ଴ሽ with 633 



32 

maximally 27 prior DOFs, the binomial DOF prior has a mean of 18.50  3.04, 634 

3.5 DOFs less than the mean model complexity of ሼℳିଵሽ. Interestingly, for ሼℳ଴ሽ the 635 

posterior mean (19.14  1.59) is located to the right compared to the prior mean, i.e. 636 

the data enforced a preference for models with more bidirectionalities than the prior 637 

average, showing the automatism embodied in the Bayesian framework: it does not 638 

generally select the simplest models if they fail to account for the data. The difference 639 

of only 1.23 DOFs between the two posterior DOF distribution means of the effective 640 

model ensembles ሼℳ0ሽୣ୤୤ and ሼℳെ1ሽୣ୤୤ is markedly small, despite the fact that ሼℳିଵሽ 641 

contains more than 16 million models variants. Notably, the minimal models are 642 

located in the very left tail of the posterior DOF distributions, whereas the original 643 

model resides at the right tail. 644 

The results show that the apparent robustness of the multi-model inferences 645 

indeed stems from the characteristics of BMA to arrive at stable posterior 646 

distributions. Practically, this means that regardless of how complex a super-model 647 

set of ሼℳ଴ሽ is, the contributions of all unnecessarily complex models, i.e. models with 648 

additional bidirectionalities that do not have decisive support from the data, are 649 

automatically excluded so that inferences remain coherent. This tempered version of 650 

Ockham’s razor contrasts the observation made for the single-model inferences and 651 

shows that BMA is a powerful remedy for dealing with uncertain bidirectionalities.  652 
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 653 

Figure 7: Necessary vs. unnecessary (effective) model complexities. DOF posterior 654 

distributions derived by employing BMA to the model sets ሼℳ଴ሽ and ሼℳିଵሽ. (a) Prior DOF 655 

probability densities for ሼℳ଴ሽ (10-24 DOFs) (blue) and  ሼℳିଵሽ (10-34 DOFs) (red, overlaid) 656 

are shifted binomial distributions with means indicated by vertical lines. (b) Posterior DOF 657 

probability densities for the two effective model sets. The mean of the posterior DOF 658 

distribution for ሼℳ0ሽୣ୤୤ is shifted towards models with on average more bidirectionalities 659 

compared to the prior, whereas the mean of the posterior DOF distribution for ሼℳെ1ሽୣ୤୤ is 660 

shifted towards models with fewer bidirectionalities compared to the prior, yielding posterior 661 

distributions that are largely overlapping. For comparison, the DOFs of the minimal ℳଵ, ℳଶ 662 

(DOF = 13), the original model ℳ଴ (27), and the complex model ℳିଵ (34) are indicated. 663 

 664 

 665 

4. Conclusions 666 

Modelling isotope labelling data is an inherently difficult problem, where the 667 

investigated complex biological systems invariably require the modeller to create 668 

complex models for describing the data that are nevertheless a rough approximation 669 
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of the system under study. Comprehensiveness has been demanded, as the 670 

seemingly safer path so as not to overlook any possible model solution (Hendry et al., 671 

2020), an argument that is common in systems biology (Westerhoff et al., 2009). 672 

However, the scope and granularity of models necessarily have to achieve a 673 

compromise between simplicity and comprehensiveness. In fact, in the majority of 674 

investigations, as the one scrutinized here, modellers aim at including all important 675 

model components, but expel unnecessary complexity by integrating hard-coded 676 

assumptions, as priors, about the system. However, such a priori assumptions may 677 

not be pertinent to a particular system or tested condition, therefore may introduce 678 

bias. For example, a biochemical reaction that acts reversible in vitro may not be 679 

reversible in vivo when actual physiological conditions differ from those applied in the 680 

test tube. This modelling assumption is therefore only reliable when they can be 681 

tested for validity, in the best case experimentally. The extent to which model-based 682 

inferences depend on untested, or even untestable, assumptions has not been 683 

rigorously investigated until now. 684 

Adopting the Bayesian approach to tackle the longstanding problem of 685 

modelling bidirectional reaction steps in 13C-MFA as a test case, we here delineate 686 

the extent to which bidirectionality assumptions, either too few or too many, are 687 

problematic. We show for a well-investigated E. coli test case that, by ignoring 688 

uncertainty about the model assumptions, the use of a single model, whether too 689 

simple or comprehensive, can come at severe risks of biases together with loss of 690 

reliability and robustness of the resulting flux inferences: On the one hand, we show 691 

that direct application of simplicity (Ockham’s razor) to find the simplest solution 692 

neglects model, and thereby underestimates flux, uncertainty, as there may be a 693 

great many simple models with very different flux solutions. On the other hand, a 694 
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comprehensive model does not safeguard reliable inferences, because it risks 695 

attributing experimental noise to superfluous model parameters.  696 

To overcome these problems in 13C-MFA, we propose to use Bayesian multi-697 

modelling as an alternative paradigm, where multiple models of a range of 698 

complexities are considered simultaneously, and the importance of the individual 699 

models is weighted according to the models’ probability, given the data. This factor 700 

automatically penalizes too complex models, so is consistent with the principle of 701 

Ockham’s razor, but also favours more complex models if these are needed to 702 

explain the data. An overview of single- and multi-model 13C-MFA inference is found 703 

in Supplementary Fig. S4. 704 

The practical utility of the multi-model approach to faithfully represent model 705 

uncertainty was demonstrated for the published study where BMA gives coherent flux 706 

inferences, even in the case of comprehensive model sets. Here, BMA unlocked 707 

insights that cannot be obtained for any single-model technique. Strikingly, the 708 

analysis confirmed some of the uni- and bidirectionalities that were fixed in the 709 

published model, whereas other published uni- and bidirectionalities remained 710 

unsupported by the data at hand. This feature of the multi-model approach, which 711 

was previously demonstrated on synthetic data (Theorell and Nöh, 2020), allowed us 712 

to not only arrive at robust flux inferences, but also to discover new evidence in the 713 

data for uni- and bidirectional reactions in the published model, but without risking the 714 

bias of a priori assumptions. Notably, BMA-based 13C-MFA now supports the 715 

established, but previously problematic, practice of, in case of doubt, setting 716 

reversible reactions as bidirectional.  717 

Our analysis thereby highlights the epistemological potential of multi-model 718 

inference using BMA for the kind of model inference that is fundamental for metabolic 719 
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engineering. We demonstrated that rigorous inferences can still be obtained even in 720 

the frequent case of incomplete knowledge of the system. Moreover, valid inferences 721 

can still be made in the common situation in which details of some entities in the 722 

system remain unresolved. Both features are particularly useful in network biology 723 

where problems are vastly underdetermined and finding a single model that resolves 724 

all uncertainties is highly improbable. Importantly, with a proxy model that describes 725 

the relevant aspects of the system being a component of the BMA model set, the 726 

working mechanism of BMA automatically assigns low importance to unnecessarily 727 

comprehensive models, even if they outnumber the set of “useful” models by orders 728 

of magnitude. In the case of countably many mechanistic models, as in modelling 729 

bidirectionalities in 13C-MFA, this pruning capability of the tempered Ockham’s razor 730 

(1) counteracts the “madness of crowds” (Stumpf, 2020), (2) behaves beneficially with 731 

respect to its computational resource efficiency and scalability (Theorell and Nöh, 732 

2020), and (3) has proved extraordinary useful in practice (Borah Slater et al., 2023; 733 

Mitosch et al., 2023). 734 

Although we investigated the case of bidirectional reaction steps, multi-model 735 

inference with BMA is far from limited to this type of model uncertainty in metabolic 736 

flux inference, but is relevant for inference under any kind of model uncertainty. This 737 

makes BMA also pertinent to a wide range of inference problems in biology where 738 

many model assumptions are only rarely tested or are even untestable by the data. 739 

Similar problems arise for gene regulatory networks and signalling networks or indeed 740 

any problem that must deal with model uncertainty (Hangos et al., 2014; Haunschild 741 

et al., 2005; Oates et al., 2014; Timonen et al., 2019). Neglecting model uncertainty 742 

can only be justified in the cases where one model is so likely that it outweighs all 743 

other candidates, which is a very rare occurrence, particularly in biology. For the vast 744 
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majority of cases in which uncertainty is embedded in models, we argue that multi-745 

model approaches, such as BMA, should be applied to unlock the full epistemological 746 

potential of these underdetermined models. 747 

 748 

Availability of data 749 

The model files used for the study are available in Supplementary Data. The MCMC 750 

datasets generated and analysed in this study, as well as the Wasserstein distances 751 

are available at https://github.com/JuBiotech/Supplement-to-Theorell-et-al.-752 
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